Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ben-Lai Wu, Ben-Yong Lou, Lei Han and Mao-Chun Hong*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: hmc@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.062$
$w R$ factor $=0.106$
Data-to-parameter ratio $=10.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1,3-Bis(pyrimidin-2-ylsulfanyl)propan-2-one

The title compound, $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}_{2}$, has a twofold axis passing through the carbonyl group. The molecules stack along the b axis via $\pi-\pi$ interactions.

Received 7 January 2005 Accepted 2 February 2005 Online 12 February 2005

Comment

In recent years, N -containing heterocyclic thioethers linked by various aryl or alkyl groups have been widely exploited in metal-organic self-assembly as multitopic bridging ligands, and several unique structural motifs with this type of ligand have been obtained (Hong et al., 2000; Zheng et al., 2003). Thus, we designed and synthesized the title compound, (I), which is a new nitrogen-containing heterocyclic thioether ligand with a propan-2-one moiety as the linkage.

(I)

In (I), there is a twofold rotation axis passing through the $\mathrm{C} 6=\mathrm{O} 1$ carbonyl group of the propanone moiety (Fig. 1). Two pyrimidin-2-ylsulfanyl groups are oriented anti with respect to the propanone moiety. Atom S1 deviates from the leastsquares plane of atoms $\mathrm{C} 5 / \mathrm{C} 5^{\mathrm{i}} / \mathrm{C} 6 / \mathrm{O} 1$ by $0.806(1) \AA$ [symmetry code: (i) $1-x, y, \frac{3}{2}-z$]. The dihedral angle between the two pyrimidine rings is $48.1(1)^{\circ}$, while that between the propanone moiety and the pyrimidine ring is $78.3(1)^{\circ}$. Notably, the molecules stack along the b axis through $\pi-\pi$ interactions, with center-to-center distances of $3.662 \AA$ (Fig. 2).

Figure 1
Perspective view of (I), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level. [Symmetry code: (A) $1-x, y, \frac{3}{2}-z$.]

Experimental

Sodium methoxide ($0.540 \mathrm{~g}, 10 \mathrm{mmol}$) and 2-mercaptopyrimidine ($1.12 \mathrm{~g}, 10 \mathrm{mmol}$) were stirred vigorously in $\mathrm{MeOH}(50 \mathrm{ml})$ for 1 h ; a quantitative amount of 1,3-dichloro-2-propanone $(0.635 \mathrm{~g}, 5 \mathrm{mmol})$ was then added. The resulting solution was heated at 373 K for 12 h and filtered after cooling to room temperature. Removal of the solvent from the yellow filtrate yielded a yellow powder which was washed with water and recrystallized from methanol to produce yellow crystals of (I) (yield $1.01 \mathrm{~g}, 72 \%$). Slow evaporation of a methanol solution of (I) over a period of two weeks yielded yellow prism-shaped crystals suitable for X-ray diffraction.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}_{2}$
$M_{r}=278.35$
Orthorhombic, Pbcn
$a=7.8042$ (11) \AA
$b=7.3159$ (11) \AA
$c=21.753$ (3) \AA
$V=1242.0(3) \AA^{3}$
$Z=4$
$D_{x}=1.489 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker SMART CCD diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.775, T_{\text {max }}=0.975$
6883 measured reflections

Mo $K \alpha$ radiation

Cell parameters from 6883 reflections
$\theta=1.9-25.0^{\circ}$
$\mu=0.42 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.12 \times 0.10 \times 0.06 \mathrm{~mm}$

1101 independent reflections
813 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.075$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-8 \rightarrow 8$
$l=-25 \rightarrow 21$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.106$
$S=1.15$
1101 reflections
103 parameters
All H -atom parameters refined

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0245 P)^{2}\right. \\
\quad+1.036 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}{ }^{2} 0.21 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C4	$1.759(3)$	O1-C6	$1.212(6)$
S1-C5	$1.793(4)$		
C4-S1-C5	$99.86(18)$	O1-C6-C5	$123.3(3)$
C6-C5-S1	$114.8(3)$	C5-C6-C5	$113.4(5)$
C5-S1-C4-N1	$2.1(3)$	$\mathrm{S} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 1$	$-29.7(3)$
$\mathrm{C} 4-\mathrm{S} 1-\mathrm{C} 5-\mathrm{C} 6$	$-64.2(3)$	$\mathrm{S} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 5{ }^{\mathrm{i}}$	$150.3(3)$

Symmetry code: (i) $1-x, y, \frac{3}{2}-z$.

Figure 2
Packing diagram of (I), projected along the b axis, showing the stacked arrangement of molecules. H atoms have been omitted.

All H atoms were located in difference Fourier maps and their positional and isotropic displacement parameters were refined. The $\mathrm{C}-\mathrm{H}$ bond lengths are 0.91 (3)-1.00 (4) \AA.

Data collection: $S M A R T$ (Siemens, 1996); cell refinement: $S M A R T$ and SAINT (Siemens, 1994); data reduction: SAINT and SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXL97.

This work was supported by the Natural Science Foundation of China and the Natural Science Foundation of Fujian Province.

References

Hong, M., Zhao, Y., Su, W., Cao, Y., Fujita, M., Zhou, Z. \& Chan, A. S. C. (2000). J. Am. Chem. Soc. 122, 4819-4820.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). SAINT (Version 4.0) and SHELXTL (Version 5). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART (Version 4.0). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zheng, Y., Du, M., Li, J., Zhang, R. \& Bu, X. (2003). J. Chem. Soc. Dalton Trans. pp. 1509-1514.

